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Summary. The lattice cluster theory of corrections to Flory-Huggins theory is 
applied to binary compressible blends (at a pressure of one atmosphere) that are 
formed by polymers having stru¢tured monomers. Calculations are performed in 
the high molecular weight limit for the dependence of the small angle neutron 
scattering effective interaction parameter Zeyr on composition ~1, monomer 
structure, microscopic interaction energies, and temperature. The limiting high 
molecular weight X«y(Cbl) curves have an overall general parabolic behavior with 
center, curvature, and magnitude that vary significantly with monomer structures 
and with interaction energies. The latter variation is stronger and occurs even at 
constant Flory-Huggins interaction parameter zFä where incompressible blend 
models cannot describe the strong dependence on the self-polymer-polymer- 
interactions obtained hefe. A quasi-athermal limit, in which Z«j~(451) is nearly 
temperature independent, appears for high molecular weights only when xF~ is 
vanishingly small. Phase diagrams are studied by evaluating the cloud points for 
coherent scattering from binary blends. Blends with negative xF2 n have only a 
LCST, but ones with positive zF~ / may have closed loop phase diagram or both 
LCST and UCST. However, one of the latter two critical points may be 
unobservable due to an intervening glass transition or because of thermal 
degradation. 

Key words: Polymer blends - Monomer structure - Compressibility - Lattice 
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1. Introduction 

Polymers are essential components in all biological systems and in a wide variety 
of advanced materials. Polymers may be found in solutions, as liquids, glasses, 
crystalline materials, micelles, liquid crystals, and gels. They may be studied in 
static or flowing systems and under equilibrium or highly nonequilibrium condi- 
tions. The rich variety of phenomena associated with polymers is now accepted 
to be a direct consequence of the extended nature and internal ftexibility of 
polymer chains. 
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Fig. 1. Examples of two 
short linear polymer chains 
of species 1 and 2, with 
N1 = 12 and N2 = 16 
monomers, respectively, on 
a square lattice (z = 4). 
Nearest neighbor 
monomers interaet with 
attractive van der Waals 
energy eij ( i , j  = 1, 2). 
Dashed lines represent the 
interactions between 
monomers of different 
polymer species 

Early theoretical studies of polymers [ 1] centered on the description of their 
properties in dilute solutions [2], on the one hand, and in concentrated solutions 
or the liquid state (called the melt) on the other hand. Meyer [3] first suggested 
that the entropy of mixing for long-chain polymers with small solvent molecules 
could be calculated by using a lattice model in which the monomers of the 
polymer chain occupy the same kind of sites as solvent molecules. This model is 
depicted in Fig. 1 with two polymer chains of different polymer species on a 
square lattice. The polymers of a given species are represented in Fig. 1 by 
sequentially bonded sets of monomer units such that no two monomers occupy 
the same lattice site. All sites not occupied by polymers are taken by solvent 
molecules for concentrated polymer solutions, or they remain empty and thus 
model excess free volume in treatments of compressible polymer systems. Figure 
1 presents the polymer chains as being completely flexible. This model therefore 
represents the polymers as self and mutually avoiding random walks on a lattice. 
Computation of the systems' (athermal limit) packing entropy proceeds accord- 
ing to the usual statistical mechanical definition relating the entropy to the total 
number of configurations available to the system. 

The lattice model also includes attractive ran der Waals interaction energies 
between nonbonded nearest neighbors. Those involving monomers of different 
polymer species are depicted by dashed lines in Fig. 1. A binary polymer blend 
has the three attractive interaction energies ~11,/~22» and/~12 between the respec- 
tive nearest neighbors lattice pairs. The introduction of these interaction energies 
enables computations of all thermodynamic properties for polymeric systems. 

The counting problem posed by the enumeration of all configurations 
available to self and mutually avoiding polymers on a lattice has been formidable 
[1, 4-6]. The mean-field treatments of Flory [1, 7-9] and Huggins [10] for long, 
linear, flexible polymers represented a major breakthrough in providing what has 
become probably the most widely used theory for the thermodynamic properties 
of polymer systems. These lattice models have played an important role in 
developing statistical mechanical theories of, for example, polymer solutions [ 1], 
gels [11], the polymer glass transition [12], liquid crystals [13-17], rubber 
elasticity [18, 19], and the segregation of two or more polymer species [20, 21]. 
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Standard Flory-Huggins mean-field approximations replace the strict con- 
straint of single occupancy at each lattice site by probabilistic arguments for the 
site occupancy [1]. As an illustration, the Helmholtz free energy of mixing A F  "nix 
for two kinds of polymers in the incompressible liquid phase (called a blend) 
emerges in the well-known form involving a combinatorial entropy and an 
energy of mixing [ 1]: 

A F  mix 
q~, + ~ In ~b2 + Z ,F2H(~I q~2» (1.1) In 

NtkB T M1 

where Nt is the total nurnber of lattice sites, ~bi is the fraction of sites occupied 
by species i (usually called the segment fraction), and M~ is the number of lattice 
sites occupied by a single chain of type i. The Flory-Huggins theory interaction 
parameter xF~ ' is obtained from the nearest neighbor attractive neighbor van der 
Waals energies e U as: 

Z f ~  = z(ell + e22 - 2e12)/(2kBT),  (1.2) 

where z is the number of nearest neighbors to a given lattice site (called the 
lattice coordination number). In practice, X~~ in Eq. (1.1) is treated as a 
phenomenological parameter, and the free energy of mixing then becomes 
independent of any lattice model parameters. Flory obtained Eq. (1.1) by 
sequentially placing uncorrelated, but connected, monomers on the lattice, 
ùwhereas Huggins used a more sophisticated counting scheine which begins to 
account for the short-range correlations associated with individual bonds [22]. 
The Huggins approach differs from Flory's by a small additional contribution to 
the entropy of mixing that depends explicitly on the lattice coordination number 
z. Lack of knowledge of the appropriate value of the z for realistic polymer 
systems and the greater simplicity of the Flory one-parameter theory led to the 
widespread use of the Flory form [Eq. (1.1)], which has been termed Flory- 
Huggins theory to respect the independent contributions of Huggins. 

The mean-field expression of Eq. (1.1) displays a blend as having a very small 
entropy of mixing because of the high polymer molecular weights, i.e., the large 
number of segments M~ on a single polymer. In addition, estimates of the 
interaction energies e;j from molecular polarizabilities lead to the expectation that 
;~F~ in Eq. (1.2) is generally positive, giving an unfavorable heat of mixing. 
Consequently, the Flory-Huggins prediction of Eq. (1.1) implies that long- 
chain, flexible polymers would not tend to mix in the liquid state, and this is 
generally observed. However, blends are useful as precursors to a variety of 
composite materials, so considerable effort has been devoted to find polymers 
that mix (blend) in the liquid state and to find some prineiples guiding polymer 
mixing. Unfortunately, standard Flory-Huggins theory of Eqs. (1.1) and (1.2) 
and its straightforward generalizations offer no such guidance. 

The Flory formulation in Eq. (1.2) displays the interaction parameter Z as 
independent of composition and molecular weights, proportional to T - ' ,  and 
energetic in origin. However, when ;~ is treated as a phenomenological parame- 
ter, comparisons with experiment show Z to depend on polymer concentration 
and rnolecular weights and to contain both energetic and entropic contributions 
[1, 22-26]. Often the entropic contribution to Z greatly exceeds the enthalpic 
one. These empirical observations strongly conflict with the predictions derived 
from the original model and leading to Eqs. (1.1) and (1.2). Therefore, there 
must be errors in either the lattice model, the mean-field approximation of Flory, 
or both. The improved counting scheine of Huggins provides an entropic 
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contribution to Z that is too small in magnitude to explain the experimental 
results. Koningsveld and Kleitjens [27] and Kurata et al. [28] have applied 
Guggenheim [29]-Huggins-type counting arguments to the energetic term ;t in 
Eq. (1.1) and thereby describe a composition-dependent heat of mixing [28, 29]. 
However, their formulation is replete with phenomenological parameters with 
only a vague molecular basis [27]. 

In order to rectify some of the above deficiencies, Flory developed what is 
now called the equation of state theory for the statistical thermodynamic 
properties of polyrner systems [24, 30, 31]. The approach combines statistical 
mechanical models with thermodynamic phenomenology: It utilizes the combina- 
torial entropy of mixing in Eq. (1.1) and a simple one-dimensional statistical 
mechanical model to describe the entropic contribution from free volume in 
perhaps a more realistic form than that provided by introducing voids into the 
standard lattice mode1. However, equation of state theories are still forced to 
introduce a phenomenological parameter corresponding to the entropic contribu- 
tion to the interaction energy parameter X, a contribution of completely uncer- 
rain molecular origins. Composition dependences in heats and entropies of 
mixing are modeled by Flory following the work of Prigogine and co-workers 
[32] by considering polymers to interact through those parts of the molecule that 
lie on the vaguely defined "surface" of the randomly shaped polyrner. However, 
the relevant surface fractions are incalculable, so they are relegated to additional 
phenomenological parameters. Recent analyses [33] show that the introduction 
of a similar type and number of phenomenological parameters into the mean- 
field lattice theories leads to roughly comparable and therefore operationally 
equivalent results. 

Our interest lies in developing a systematic theory of polymer melts, blends, 
concentrated solutions, gels, etc. (we term these systems polymeric fluids) that is 
capable of explaining the molecular origins of the large observed entropic 
contribution to the phenomenological interaction parameter Z«~ and of explain- 
ing the pressure, temperature, molecular weight, and composition dependences 
of this phenomenological parameter. Central to considering a molecular based 
theory is the establishment of relations between monomer structure and their 
interactions with the physical properties of melts, blends, and concentrated 
polymer solutions. We now briefly digress to mention certain aspects of the 
theory of polymers in dilute and semidilute solutions to assess whether the lattice 
model is most likely the source of inadequacy in FH theory. 

The standard lattice model of self and mutually avoiding polymers with 
nearest-neighbor nonbonded van der Waals interactions (Fig. l) has been widely 
used in conjunction with Monte Carlo simulations to predict correctly a wide 
range of subtle properties of dilute and semidilute polymer solutions [34], and 
simulations are being extended to the more concentrated regimes [35, 36]. The 
robustness of the lattice model for describing dilute and semidilute polymer 
solutions suggests that this model should also be of great utility for polymeric 
fluids and therefore that many deficiencies of Flory-Huggins theory lie with the 
mean-field approximation of Flory. It is, of course, likely that the transition from 
the dilute and semidilute solutions to the concentrated limit of polymeric fluids 
introduces additional physical phenomena that are no longer correctly repre- 
sented by the lattice model. We note also that analytical theories, which agree 
both with Monte Carlo simulations and with experiment, are currently available 
for treating the equilibrium properties of polymers in dilute and semidilute 
solution [37]. We therefore seek to employ and extend the lattice model to 
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provide an equally accurate representation of the equilibrium statistical mechan- 
ics of polymeric fluids. 

The next section summarizes a general scheine for systematically solving the 
lattice model as well as a generalization of the lattice model in which 
monomers are given specific molecular structures by allowing them to extend 
over several lattice sites. The free energy of polymeric fluids is obtained as a 
cluster expansion in which the Flory-Huggins mean-field approximation is 
recovered in zero order [38-46]. The cluster expansion is arranged as an 
expansion in the inverse of the lattice coordination number and in the Mayer 
f-functions: 

f j  = exp(e0. ) - 1 (1.3) 

where the e 0 depend on the species occupying sites i and j. Although our 
original derivation [38-46] of this cluster expansion employs mathematical 
methods of field theory and particle physics [47-49], several results [46] de- 
duced from those field theoretic methods enable us to present a rather simple 
algebraic derivation [50-53] of the cluster expansion that does not necessitate 
the use of field theory. 

Section 2 provides the simple algebraic derivation of the cluster expansion for 
evaluating the lattice model free energy of a compressible binary polymer blend. 
The derivation is given for the simple case of flexible linear polymers, but 
previous papers discuss the generalization of this model to polymers in which the 
monomers are taken to have internal structures and therefore to occupy several 
lattice sites [43-45]. Such a generalization is important in modelling the proper- 
ties of real polymers for which the monomers, the solvent molecules, and voids 
generally have different sizes and shapes. Section 3 presents new results com- 
puted for the extrapolated zero angle neutron scattering effective interaction 
parameter Ze~ of binary polymer blends. Paper II discusses [53] the monomer 
structure, pressure, and composition dependence of Z« for low polymer molecu- 
lar weights, where the resultant molecular weight dependence may be useful in 
extracting the microscopic interaction parameters e« from experimental data. On 
the other hand, Sect. 3 focuses upon the high molecular weight limit in which Ze~ 
becomes independent of the Mi. As we vary monomer structures and the 
microscopic energy parameters, the large Mi limiting Z«r is found to display 
several characteristic shapes as a function of composition, in general accord with 
observations. We also consider the typical temperature dependences of Z«  and 
their variation with composition and monomer structures. Interest also centers 
on the behavior of the high molecular weight limit of quasi-athermal blends in 
which Zey is insensitive to temperature. 

Section 4 analyzes the phase diagrams of compressible polymer blends by 
studying how cloud point curves depend on microscopic interactions, monomer 
structures, and molecular weights. Interaction parameters e« and monomer 
structures, determined in paper III by fitting [54] data for Z«~, AHmix, and A V m~x 
of PS(D)/PVME blends, are used to compute the cloud points for this system. 
The computations have no additional adjustable parameters and are in good 
agreement with the experiments of Hart et al. [55]. Miscible compressible blends 
(with zF~ / < 0) yield lower critical solution temperatures that vary considerably 
with monomer structures, microscopic interaction energies, and molecular 
weights. More interesting behaviors arise for riet repulsive interactions (with 
zlF~ > 0), where closed loop phase diagrams may appear and where there may be 
both lower and upper critical solution temperatures. However more work is 
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necessary to determine how systems must be chosen in order that both critical 
temperatures lie in the accessible range between the glass transition and thermal 
decomposition temperatures. Those readers most interested in the applications 
may skip directly to Sect. 3. 

2. Lattice cluster theory of compressible binary polymer blends 

This section briefly describes the lattice model and our method for its system- 
atic solution. To maintain simplicity of presentation, we describe the theory for 
binary blends of linear chains. The application in Sects. 3 and 4, however, 
considers polymer chains that are composed of structured monomers. 

2. I. Model  o f  binary polymer blends 

The standard lattice model of a binary polymer blend depicts the two species of 
polymer chains as sets of N1 and NE identical monomers lying at the lattice sites 
of a regular array and joined, respectively, by N1-1 and N2-1 sequential flexible 
bonds. Excluded volume constraints prohibit any two monomers from occupying 
the same lattice site. The lattice structure determines the possible conformations 
for the nl and n2 polymer chains of species 1 and 2, respectively, nv unoccupied 
lattice sites, called voids, model the free volume with void volume fraction 
c~v = n~/Nt. While the lattice model of monatomic fluids is a rather poor 
representation of reality, mostly because voids and molecules are taken as having 
the same size, lattice models of polymeric fluids, which do not suffer from this 
problem, are likely to be bettet. Although, there is no limitation on introducing 
arbitrary lattices, we consider only hypercubic lattices with coordination number 
z = 2d, where d is the dimensionality. 

The extended lattice model permits monomers of a given species to cover 
sc > 1 lattice sites, so each chain occupies M« = Nes« sites. This extension allows 
us to distinguish between different polymer architectures and to investigate the 
influence of monomer molecular structure on the thermodynamic properties of 
blends. The structured monomers of polymer species « and /3 interact with 
nearest neighbor attractive van der Waals energies e«p. Since all monomer 
portions are taken, for simplicity, as energeticaUy equivalent, there are only three 
independent energies •ll, e22, and ~12. These microscopic energies, together with 
temperature, molecular weights, and blend composition [as represented by the 
volume fractions ~b i = niNisi/Nl,  (satisfying q~l + ~b2 + q~~ = 1) or by the composi- 
tion variables ~~ = 1 - ~2 = n~ N xsl/(n~ NlSl + n2N2s2)] a r e  input parameters in 
the lattice cluster theory (LCT). 

The position of t he / th  lattice site (with respect to the origin of coordinates) 
is designated by the vector r~. Two lattice sites i a n d j  are nearest neighbors when 
their positions ri and rj are related to each other by: 

ri = rj + aß, (2.1) 

where the a s (/3 = 1 , . . . ,  z) are the vectors from the lattice site i to its z possible 
nearest neighbors. It is useful to represent a nearest neighbor constraint from Eq. 
(2.1) by using the Kronecker delta function: 

6( i , j  +/3) - 6(r~, rj + as). (2.2) 
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2.2. Packing entropy in the athermal limit for  blends o f  linear polymer chains 

2.2.1. Analytical representation o f  the lattice model. The system contains n~ and 
n 2 monodisperse linear polymer chains with polymerization indices N~ and N2 for 
polymer species 1 and 2, respectively. The polymer chain conformations are 
described in the lattice model by specifying sequences of monomer locations at 
lattice sites. The athermal limit packing partition function involves the sum over 
all possible configurations of the np = nl + n2 polymer chains and can be written 
exactly with the aid of Eq. (2.2) as: 

2 1 
W(n, ,  n2, N , ,  N2) = ]-I - -  

u = 1 nu !2nu E 

• 1 .1 . . .  ~ i ü t ,  2 ~ t 1,2 ¢ 12,2 :/~ 

v ~ il,ù I ¢ i~,n I ~ ' ' "  ¢ i~l.ù 1 

i 2 i 2 i 2 
l,n 2 3 ~ 2,n 2 :~ . . , # N2,n 2 

× . .  6(iu,m, i~+l,m + fl~.ù,) ' (2.3) 
m • = l  k Œ u = l  /~Œ~,m=l 

The first bond on the first chain of species 1 enters into Eq. (2.3) with the factor 
of  ~ , z . ,  Za~. 6 ( i ] . . 1  1 i 1 .1 /2.1 "4-fl1,1), where the superscript labels the species (1 or 
2), the first subscript indicates the sequential monomer numbering along the 
chain, and the second subscript specifies the chain number of a given species. The 
next bond in this chain contributes to the partition function a factor of 

• 1 "1 1 Ei~l E f l ~ . 1 6 ( / 2 , 1 ,  / 3 , 1 - [ ' -  / ~ 2 , 1 )  w i t h  the obvious excluded volume constraint 
bet~een the nonbonded first and third monomers i~.1 ¢ i],1, etc. This process is 
continued for all bonds and all chains. A factor 1/(n u !2"») for each component 
p = 1, 2 accounts for chain indistinguishability and for the identity of chain ends. 
The excluded volume constraint « . .2 t~.~ ¢ • • ¢ tu»ù2 prohibits any two monomers 
in the system from occupying the same lattice site. This constraint in the 
summation of Eq. (2.3) is also applied to bonded monomers only for notational 
symmetry since the Kronecker deltas in Eq. (2.3) automatically produce vanish- 
ing contributions from unphysical one-bond loops [52]. 

2.2.2. Flory mean f i eM approximation. The exact representation of Eq. (2.3) of 
the lattice model enables us to extract the mean field Flory-Huggins approxima- 
tion as zeroth order and to expand the remainder in terrns of contributions 
generated by successively larger scale correlations. In order to derive this 
expansion, each of the Kronecker deltas in Eq. (2.3) is first replaced by its lattice 
Fourier transforrn: 

6( i , j  + fl) = N I  1 E exp[iq • (ri -- rj -- aß)], (2.4) 
q 

where NI is the total number of lattice sites and the wave vector summations 
index q runs over the first Brillouin zone. Summation of 6( i , j  + 8) in Eq. (2.4) 
over all bond directions fl = 1 . . . . .  z and rearrangement produce: 

z{ ~ ~0~~«) } 6( i , j  + 8) = ~ 1 + exp[iq • (r i -- rj)] , (2.5) 
B q 
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where the q = 0 term has been conveniently separated and where the nearest 
neighbor structure factor is: 

f(q) = ~ exp ( - i q . aß ) .  (2.6) 
B=I 

Equation (2.5) is now substituted into Eq. (2.3) for each Kronecker delta. Thus, 
each bond, labelled by the three indices «, m, and #, introduces the "momentum" 
vector q~,m. The packing partition function of Eq. (2.3) is then transformed 
exactly into: 

n # N  I I Z  1 
W - # = I  n,ul2n"i~l~...~'N2,n2. , u= %=1 

x 1 + z 2 f(q«,m) exp[iq~,m " (reù -- ri:+ 1,m )] • (2.7) 
q~,m ~ 0 ct,m 

When a single bond correlation correction is defined as: 

1 
X~m, ~ -  ~ f(q~,m) exp[iq~,m" (rigŒ,m - - r i f f +  1,m )] (2.8) 

Z q~m ~ 0 

and is inserted into Eq. (2.7), the resulting expression: 

W(nl,nz, N1,N2) = 1 ~', l-[ z [ l+X~m ] ,(2.9) 
n# 12ng i I i 2 mg = 1 c# = 1 / 2=1  • 1 , 1 ~ ' ' ' 5  ¢: N2,n 2 

is shown below to exhibit the form of a cluster expansion that bears a 
strong similarity to the virial series of Mayer. The totally uncorrelated contri- 
bution in Eq. (2.9) arises from the factors of unity in braces [the q = 0 terms 
in Eq. (2.5)] from all bonds and yields the Flory-Huggins mean field approxima- 
tion: 

B Z TI z . (2.1o) wMF(nl, n2, N I ,  N2) = = 1 nl~ ~ n a  i~, 1 ~ . . .  ~ i22,n2 mg = 1 ~g = 1 

Carrying out the summation and products simplifies Eq. (2.10) to: 

2 

1 N,~ [z  Ig=__ .g,~g-, W~F(nI'n='N"N')=I],=, n,.'2ng( N z -  u='=k- N~n~ )L~, A '  , (2.11) 

which may be shown to recover the classic Flory-Huggins combinatorial 
packing entropy of mixing [1] (with self-reversal included) for a binary compress- 
ible polymer blend. Corrections to the mean field partition function W MF are 
discussed below. 

2.2.3. Cluster expansion for corrections to the Flory-Huggins packing en- 
tropy. The quantity X~,m of Eq. (2.8) depends on the positions of the two 
segments forming the «th bond on the mth chain of polymer species #. These 
X~.m produce the corrections [to the Flory-Huggins approximation of Eq. 
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(2.11)] as arising from correlations in monomer positions. Expanding the 
product in Eq. (2.9) naturally generates the cluster expansion: 

n~ N~ --  1 

~I I~ [ l + X ~ , m ] = l +  ~ X~.m+ E X~,,X~;.ù,+''', 
m p  = 1 Œ.u = 1 # ,Œu,m.u  ( ,u,«p,mu) > ( ,u ' ,«~,m/~, )  

(2.12) 

where the notation (#, «~, m , ) >  (p', a~, m~,) indicates that the summation in 
Eq. (2.12) runs over all distinct pairs of bonds in the system. When Eq. (2.12) is 
substituted into Eq. (2.9), the linear terms in X~,m from Eq. (2.12) emerge as 
one-correlating bond contributions, the quadratic terms as two-correlating bond, 
etc., contributions. Thus, the packing entropy partition function may be written 
a s :  

W(nl, n2, N1, N2) = wMF(rll, n2, N1, N2) 

+ X Œ , m X Œ , , m ,  + • . . (2.13) 
0',%.'nu) > (~',«ü'.'n~') Aj 

Performing all summations in Eq. (2.13) leads to the more compact form: 

where the summation in Eq. (2.14) may be represented diagrammatically as 
described by Nemirovsky et al. [42] for the original field theory formulation. The 
value of a given diagram with B correlating bonds is the product of a monomer 
structure independent connectivity constant D» and a monomer structure depen- 
dent combinatorial factor 7»- (See papers I, II, and references therein for more 
details.) The sum over B in Eq. (2.14) is understood to designate both a sum 
over all diagrams with B bonds and a sum over B. 

Athermal limit packing entropies follow simply from the Boltzmann defini- 
tion: 

S(nl, n» NI, N2) = k In W(nl, n2, N1, N2) 

= k l n  WMF(n,,n2,N1,N2) +k ln II + ~s TD(n,, n2, N1, N2)DB]. 

(2.15) 

Expansion of the logarithm in the right-most term in Eq. (2.14) and formation 
of cumulants serve to cancel exactly the unphysical (hyper-extensive) contribu- 
tions from individual diagrams in Eq. (2.14). After some rearrangement, the final 
expression: 

S(n,, n2, N1, N2) = k In w~F(nl, n» N1, N2) + k ~ [vb(n,, n» Nt, N2)DB] («) 
B 

(2.16) 
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provides the noncombinatorial portion of S(nl, n» N~, N2) as a sum of the 
contributions from cumulant cluster diagrams [y»(nl, n2, N1, N2)D»] ~° that are 
described more fully in Ref. [52]. 

2.3. Helmholtz free energy for nonathermal blends 

2.3. I. Partition function for interacting binary polymer blends. The lattice model 
of polymer fluids contains both short range repulsions and longer range attrac- 
tions. The former are described by the excluded volume constraints prohibiting 
any two monomers from lying at the same lattice site, while the attractive 
interactions are introduced by ascribing a van der Waals attractive energy e~~ to 
each pair of species # and 2 monomers that occupy nearest neighbor lattice sites 
i and j (as in Fig. 1). The partition function Z(nl, n» N1, N2) for the interacting 
system, therefore, taust include the Boltzmann factor: 

where Sù designates the set of lattice sites occupied by polymer segments of 
species #, etc. All energies e~x in Eq. (2.17) are expressed in units of k» T, and the 
prime on the sum in (2.17) implies the constraint that when ~ = 2, we require 
j ~ i .  

The total configurational partition function Z(nl, n2, NI, N2) is obtained by 
inserting Eq. (2.17) into the summand on the right-hand side of Eq. (2.3) as: 

2 1 n t ~ N ~ l ~  
Z&t2 mE /Œ+ l,m Z(nl, n» N1, N2) = l-[ ~.2"~ cS(i~,n, TM + ô~,m) 

t~=lnv • i ] , l # . . .  "N2n2 p=l Œp=l /~~m=l 

# 12<~#i~Stz _.[ 
j~  $2 

The Sù in the summation represents the set of occupied lattice sites 
• • ~ i u ù , and this ties the summation indices i and j in the van der 

Waals energyO~äctor to those in the outer summation emerging from Eq. (2.3). 
Thus, i and j in Eq. (2.18) run over all pairs of lattice sites that are occupied by 
monomers of species ~ and 2, respectively. 

2.3.2. Mayer-like Cluster expansion for attractive interaetions. The Boltzmann 
factor in Eq. (2.17) may be rewritten in terms of Mayer f-functions: 

fu~ = exp(~~~) - 1 (2.19) 

as the product form: 

ex~E~ ~ ~ »~]= ~ ~ ~: [1+ ~»~«+~~~~~] ~~~0, 
p ~ l  2<~,uiGSu ,u=l A<~#i Jff=l 

j e S z  j ~S~  

where the prime on the product has the same meaning as that on the sum in Eq. 
(2.17) and the Kronecker delta arises from the nearest neighbor character of the 
attractive interactions. Expanding the product of Eq. (2.20) in the usual Mayer 
fashion yields the cluster expansion: 
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Il" 1 + ~(i,j + ~)L~ = I + Z Z Z ~(i,j + ~)L~ 
#=1  ~ i e S  u f l= l  ,u= 1 ,~~,u B= 1 i~>j 

j ~  S.~ 

+ Z Z Z 6(i,j + fl)6(i',j" + fl')fuzfwa" + " "  • (2.21) 
~ , u ' = l  ,~<~u ~,~'=1 (~>~j)#(i'>~j') 

2"~#" 

The right side of Eq. (2.21) along with identity Eq. (2.4) for each 6(i,j + fl) is 
inserted into Eq. (2.18) to generate a double eluster expansion for the partition 
function Z(n~, n2, N1, N2). When this is done, the q = 0 terms in the energetie 
contribution to Z(n~, n» NI, ]72) of Eq. (2.21) may be separated into two 
categories. Those contributions remaining in the thermodynamic limit provide 
the leading Flory-Huggins interaction energy and a simple renormalization of 
the Mayer f-funetions as described in Appendix A of Ref. [52]. The evaluation 
of the remaining q # 0 contributions from the combination of Eq. (2.5) and the 
expansion of Eq. (2.21) then proceeds almost identically to that for the packing 
entropies in Eqs. (2.13)-(2.16) [52]. 

The Helmholtz free energy F(na,n» N~, N2) is thus obtained from the 
partition funetion Z(n~, n» NI, N2) through: 

F(nl, ne N1, N2) = - k » T  In Z(nl, n 2, N1, NJ. (2.22) 

The diagrammatic representation of Eq. (2.22) may be represented symbolically 
as:  

Z 2 2 
F(nl, n»k»TNa, N2) = In wMF(I'I1, n2, N1, N2) + Nl'~. ~__ 1 ,~=~1 f,~.ßu~b,~ 

+ ln ( l  + ~ ~°'t(nl' n2' Nl' NJDs'lt  (2.23) 

where wMF(nl, n» N1, Nz) and f~~ are given by Eqs. (2.11) and (2.19), respec- 
tively, and where the quantities Dna and 7»,~ are generalizations of the Ds and 7» 
of Sect. 2 to a new class of diagrams that contain l f-bond interaction lines in 
addition to B correlating bonds. The surrt over B and l in Eq. (2.23) denotes both 
a sum over all different diagrams with B bonds and/f-function interaction lines 
and a sum over B and l, excluding only B = l = 0. The diagrams and their 
evaluation are described in detail by paper I and references therein. 

The standard procedure of expressing the Helmholtz free energy 
F(n~, nz, N~, NJ  as a direct sum of diagrammatic contributions employs the 
expansion of each Mayer f-function fu~ in Eq. (2.23) as a power series in ~ù~ and 
the subsequent expansion of the last logarithm in Eq. (2.23) as a Taylor series. 
Collecting the resulting contributions with a given power of eu~ into cumulants 
ensures the exact cancellation of higher order terms in N» The free energy is then 
written in the form: 

2 2 z y~ y~ e~~~~~~ F(nl, n2,kBTN1, N2) = In wMF(nI, n2, N1, N2) + Nt -~ ~, = 1 ~ = 1 

nr- 2 [~D,l(nl , n2,  N , ,  N2)Ds,I] («), ( 2 . 24 )  
B,I 

where [~»,t(n~, n» N1, N2)Dsj («) are the generalized cumulant cluster diagrams of 
Ref. [52] whieh reduce for l = 0 to the cumulant cluster diagrams in Eq. (2.16). 
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Fig. 2. Examples of vinyl 
monomer structures that 
extend over sc > 1 
neighboring lattiee sites. 
Polymer chains are 
constructed by linking 

B backbone submonomer 
units (solid circles) in the 
direction of the arrows. 
All bonds including those 
joining side groups (open 
circles) are fully flexible in 

(]) three dimensions 

The sum of the generalized cumulant cluster diagrams provides all corrections to 
FH, while the two first terms of  the right hand side of Eq. (2.24) are the q = 0 
limit FH athermal entropic and energetic contributions, respectively. 

3. Small angle neutron scattering effective interaction parameter J~eff 
for binary compressible blends 

Although the algebraic derivation of  the LCT for the athermal limit packing 
entropy in Eq. (2.16) and for the Helmholtz free energy of  Eq. (2.24) of  binary 
compressible polymer blends is presented in Sect. 2 for linear chains, the final 
expression of Eqs. (2.16) and (2.24) are quite general and apply to polymers with 
structured monomers, provided that the diagrams and factors ~»,t are suitably 
generalized as described [52] in paper I. Figure 2 displays some examples of the 
vinyl monomer structures that are considered here. Chains of  species « have 
polymerization indices N« and monomers that occupy sc sites. The total number 
of sites occupied by a chain of  species «, the site occupancy index Ms, is thus 
M« =Nest.  The composition of  these structured monomer blends may be 
expressed in terms of volume fractions ~b« = neM« IN» nominal volume fractions 
~Œ =_ ~b«/(1 -~bv) or experimental volume fractions that are defined in terms of 
pure « melt volumes V« as ~~xp) __ V«/(V~ + V2). 

3. I. Binary blend at constant pressure 

After extending the theory to chains with structured monomers and after 
computing and rearranging separate cumulant diagram contributions to the LCT 
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Helmholtz free energy of mixing, Eq. (2.24) becomes a polynomial in the volume 
fractions ÓŒ and Ó~ with the general structure: 

A F»'ix ~11 NlkB ~ -  Ó~ lnÓ~ + In qgl + q92 In 62 + 61q52 - -  i,j=O ~ °r(i'J)thigAJ M2 ,512 W1Wv 

i + j ~ 4  

g(i,j) d~i d~J 
2v W2Wv~ 3t-(~l~)v 2 g~ij)qb](°{ + qb2cP~ ~ (3.l) 

i,j = 0 i,j = 0 
i+2j~<6 i+2j~<6 

where logarithmic terms provide the traditional FH combinatorial entropy of 
mixing for a compressible blend and where the upper limits on the summations 
arise because of the approximations used [52]. The coefficients ,(ic) g~~~), and ,512 
g(2~~ ) in Eq. (3.1) are expanded in the inverse coordination number 1/z and in the 
three microscopic interaction energies e~~, e2» and el2 (in units of k»T) .  Using 
symbolic notation, this double series is expressed as: 

g(ißJ) = 2 (Z) --q[oiGŒß]'trt°(i,j)Wp,q , (Œ ~ fl) (3 .2)  
q« 

where, for instance, terms in (e«ô)2 represent quadratic contributions like 
~121, ~11~12, ~lle2e, etc. and ~«~-= etc. The coefficients C (iJ) in Eq. (3.2) are func- ~p,q 
tions of the site occupancy indices M« and the monomer structure dependent 
combinatorial factors N} «), N~~,],... that are defined in detail and are tabulated 
[54] in paper III. 

While the Helmholtz free energy F in Eq. (3.1) describes the thermodynamic 
properties of a polymer blend at constant volume V, the Gibbs free energy 
G = F + P V  is designed for systems at constant pressure P. Converting the free 
energy of mixing A F  mix into: 

AG mi~ = A F  ~ix + P A V ''i~ (3.3) 

requires specification of the pressure and the computation of the volume change 
on mixing. The former is evaluated from the Helmholtz free energy of Eq. (3.1) 
as: 

Ô z~ F mix 
P =  

d V  

with 

[ q~l ~2 = L--ln~v - ( 1  -+~) + ~ + ~  
T, n l,n 2 

+ ~14~~pl~ + 4~lcLp,v + 4~~4~~p2~] (k~T)/a ~ 
I 

(3.4) 

P12 ~- Z ,512c"(i'J)rLi'4~«--l[( i W 1 W v  + J  + 1)qSv - - J ] ,  (3 .4a )  
i , j=o 

i + j ~ 4  

P«v -- ~ g(ibj)(~~~j- 1[(i + j  + 1)q~ v _ ( j  + 1)], Œ = 1, 2, (3.4b) 
i,j = 0 

i + 2 j ~ 6  

where a is the lattice constant that is assumed here to be temperature independent. 
Equation (3.4) enables the numerical determination of the void volume fraction 
~b~ as a function of P, M~, 3/2, T, and a for arbitrary blend compositions ~1. 
Analogous equations of state can be derived for pure melts from the free energy 
of mixing AF~ ix that is obtained from Eq. (3.1) by setting ~be = 0  (fl #«) .  
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The pressure P(«) of a pure melt « thus emerges from the melt analogue of Eq. 
(3.1) as: 

P(«)= OAFm~ix OV T,n = I  - l n  ~ß(v«) - (1 - Ó(~«)) 

(1 -- 4~ «)) + 47)( 1 _ q~(~'))P«v] k»T/a3, (3.5) 
+ M« 

where p~v is given by Eq. (3.4b) with q~~ = qS~ «) and qS« = (1 - ~b~ «)) and where q~~«) 
denotes the void volume fraction in the compressible melt of pure component «. 
The latter also determines the volume of mixing: 

( q~l q~2 ) (3,6) A V  mix= V -  V 1 -- V2= V 1 - ( 1  -2~b(~1~) " (1 --~(2)) 

and therefore by Eq. (3.3) provides AG "ex. We numerically invert Eqs. (3.4) and 
(3.5) to obtain ~bv = qS~[nl, n2, n~(nl, n2, P,T)] and qS~ «~ = ~b~«)(P, T) for insertion 
into Eqs. (3.3)-(3.6). Since the thermodynamic quantities are defined for a 
stable homogeneous one-phase blend, stability taust be checked for each set of  
Me, P, T, ~1, and a used in computations. A binary polymer blend at constant 
temperature T and pressure P has only one stability condition: 

O2G P,T ~~~ > 0. (3.7) 

The derivatives in Eq. (3.7) are readily evaluated numerically. 

3.2. Definitions of  small angle neutron scattering effective 
interaction parameter Zeff 

The effective site-site Flory interaction parameter )~eff is often defined (using the 
incompressible random phase approximation) in terms of the extrapolated zero 
angle neutron scattering function S(0)-1 as: 

1[ 1 1 1 Z « = - ~  S(O)- '  . (3.8) 
M1 CBl M2 ~ß2 

The blend composition variables in Eq. (3.8) are nominal volume fractions ~« 
that satisfy the condition ~1 + ~2 = 1 and that are connected with the volume 
fractions ~bi by q)i = q~,/(1- qSv). A slightly modified definition of Zeyy: 

Z,«~ = __~ IS(0)_  1 1 1 ] MlÓ~«xp) M2~ß(2exP) (3.8a) 

contains the experimental volume fraction q~(«xp) instead of 4~«. However, the 
differences between Xeg and ZéH of Eqs. (3.8) and (3.8a), respectively, are rather 
small and vanish in the long chain limit of M 1 , M 2 ~ oo. The total (observed) 
extrapolated zero angle structure factor S(0) is a weighted sum of the zero wave 
vector partial structure factors Sch(0): 

S(O) = p2S11 (0) + 2plp2S~2(O) + p22S22(0), (3.9) 

where the weights Pl and P2 are reduced scattering lengths that are norrnalized 
such that pl - P 2  = 1. When the scattering contrast is complete and the scattering 
is by monomers of species 1, the reduced scattering length of species 2 becomes 
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P2 = 0, and Eq. (3.9) yields S(0) = Sl l  (0).  The zero wave vector partial structure 
factors S«p(0) are related to the chemical potentials/~« and #~ by: 

1 N t ~3#« 7", v,u~" (3 .10)  Sch(O) - - M«MakB T On~ 

Since the chemical potentials p~ and #2 can be easily evaluated from the free 
energy of Eq. (3.1), Eqs. (3.8) and (3.10) readily provide the effective interaction 
parameter Zeff. For simplicity, the calculations presented here just employ the 
definition of Eq. (3.10) for the perfect scattering contrast assumption, but the 
general case is readily treated. 

Experimental neutron scattering data are sometimes analyzed [55] in terms of 
a monomer pair interaction parameter Z"ff that is defined by: 

Xéff__ 1 Va(0) 1 1 l 1 
Vo 2 L  Vc NlVl~)~exp ) N2v2~(2exp ~ . (3.11) 

The reference unit cell volume Vo = (v~ v2) 1/: is the geometrical mean of monomer 
volumes v» and v« in Eq. (3.11) denotes the ceU volume associated with a single 
lattice site. This Z~# is related to Z~# of Eq. (3.8a) through the composition 
independent factor (S1S2) 1/2: 

~é~ = Z'~jy(sl s2) 1/2 (3.12) 

with sc being the number of lattice sites occupied by one monomer of species «. 

3.3. Dependence o f  small angle neutron scattering interaction parameter Z«ff 
on molecular weights 

Paper II studies [53] some features of the neutron scattering X«g for binary 
compressible blends, but the majority of the computations there involve low 
molecular weights to emphasize the resultant molecular weight dependence that 
emerges principally for low volume fractions of one of the blend components. 
This low molecular weight limit is useful in experiments as providing information 
to determine three independent microscopic interaction energies, but many 
applications involve high molecular weights. Thus, we consider here the large 
molecular weight limit and the transition to this limit. As the monomer molecu- 
lar structure and the microscopic interaction energies are varied, the high 
molecular weight limiting )~eff is found to exhibit several characteristic shapes 
with magnitudes dependent on the system and structure parameters. Hence, one 
of our objectives is to illustrate these general trends. 

The polymer molecular weights M(w «» are proportional to the site occupancy 
indices M« as: 

M ~  ) = M«M~)o,/sc, (3.13) 

where M(~)où is the molecular weight of a single monomer. The compressible LCT 
calculations of Figs. 3-14 for ;reif are performed for the usual experimental 
pressure of P = 1 atm, and they employ a simple cubic lattice with coordination 
number z = 6 and the lattice constant a = 2.5477 A. 

The infiuence of molecular weights on Z«yf is further illustrated by comparing 
Figs. 3 and 4, where all else is the same apart from the polymerization indices 
which are 100 and 104, respectively. Component 1 has the monomer structure a 
of Fig. 2, while component 2 has structure c. (In the following the component 
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Fig. 3. Low molecular weight LCT small angle neutron scattering effective interaetion parameter 
;(«~T(~I) of a model a-c binary blend for various self-interaction energies ell but  constant e22/ 
k»T = 0.6 and e/k»T = - 0 . 0 2 3  (T = 423.15 K). The curves from top to bot tom correspond to 
eH/kBT=0.45, 0.47, 0.5, and 0.6. The polymerization indices of two blend components are 
N1 = N2 = 100. The same a-e model binary blend is employed in Figs. 3 -9 ,  13 and 14. Figs. 3-21 
present Zog or cloud points for P = 1 atm. Figs. 3 -12  have T = 423.15 K 

Fig. 4. High molecular weight limit LCT small angle neutron scattering effective interaction parameter 
~«y(~l)- All parameters are the same as in Fig. 3, except the polymerization indices which are taken 
as N1 = N2 = 10  4. The latter values well represent the high molecular weight limit N« --* 0% ct = 1, 2 

Fig. 5. Molecular weight dependence of the LCT small angle neutron scattering effective interaction 
parameter Z«~q(~l) for one of the four model examples from Fig. 3 ( e l l =  0.47kBT ). The eurves are 
- - N l = N E = 1 0 4  , ' ' " N l = N 2 = 5 0 0 ,  a n d - - -  N 1 = N  2 = 1 0 0  

Fig. 6. Same as in Fig. 5 but for ela = 0.6k»T 

s c a t t e r i n g  n e u t r o n s  is  a l w a y s  p r e s e n t e d  f i r s t . )  A l l  c u r v e s  h a v e  t h e  e x c h a n g e  
e n e r g y  e - ~ 1 2 - F e 2 2 - 2 e 1 2  = - 0 . 0 2 3 k n T ,  ez2=O.6kBT a n d  T = 4 2 3  K .  T h e  
c u r v e s  i n  F i g s .  3 a n d  4 d i f f e r  i n  811 ( a n d  t h e r e f o r e  i n  e12) t o  d i s p l a y  t h e  r e s u l t a n t  
c h a n g e s  i n  t h e  c o m p o s i t i o n  d e p e n d e n c e  o f  Xey" T h e  l o w  m o l e c u l a r  w e i g h t s  i n  F i g .  
3 i n t r o d u c e  a r o u n d i n g  o f  t h e  Xe~T(~0 c u r v e s  a t  l o w  a n d  h i g h  c o m p o s i t i o n s  ~ 1 ,  
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Fig. 7. The  L C T  small  angle  neu t ron  scat ter ing effective in terac t ion  pa rame te r  Z«ff(~~) for var ious  

po lymer iza t ion  indices N1 of  cornponent  1 and  cons tan t  (bu t  low) polyrner iza t ion  index N2 = 100. 

The microseopic  in terac t ion  energies are the sarne as for one of  four  exarnples in Fig. 3 

(eu/kBT=0.47, e22/kBT=0.6 , and  e/kBT=-O.023 ). The curves are label led as 

N l = 50, - . . . . .  N 1 = 100, • • • . N 1 = 250, and  - -  N 1/> 1000 

Fig. 8. H igh  molecu la r  weight  l imi t  LCT small  angle neu t ron  scat ter ing effective in te rac t ion  

pa rame te r  X«ff(~~) for var ious  self- interact ion energies e H bu t  cons tan t  e22/kBT=2.5 and  

t/k B T = - 0 . 0 2 3 .  The (dashed) curves f rom top  to b o t t o m  cor respond  to eil~kB T = 1,2, 1.3, 1.5, and  

2.5. The figure also shows (solid line) an example  of  an  approxi rna te ly  l inear  dependence  of  Z«# on 

~1 tha t  is ob ta ined  for e/kÆT = - 0 . 0 2 3 ,  eI1/kBT = 1.5, and  e22/k»T = 1.0 

Fig. 9. The same as in Fig. 8 bu t  for a model  c-a binary  b lend in which scat ter ing occurs frorn the 

c - m o n o m e r  chains,  whi le  i t  is f rom the a -monorne r  chains  in Fig. 8 

Fig. 10. H igh  molecu la r  weight  l imit  L C T  small  angle  neu t ron  scat ter ing effective in terac t ion  

pa rame te r  X«g(~~) for different rnodel blends bu t  the sarne three microscopic  in terac t ion  energies. 

The curves are label led as follows: - -  a rnodel a-I  binary  blend, • • • • a rnodel a- i  binary  b lend  
wi th  10 uni ts  in the side group,  and  . . . .  a mode l  a - c  b inary  blend. The in terac t ion  energies are 

t aken  frorn one of  the four  examples  in Fig. 4 (e/k»T = - 0 . 0 2 3 ,  eH/k»T = 0.5, and  S2a/kBT = 0.6) 
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F i g .  1 1 .  V a r i a t i o n s  o f  h i g h  m o l e c u l a r  w e i g h t  l i m i t  L C T  s m a l l  a n g l e  n e u t r o n  s c a t t e r i n g  e f f e c t i v e  

interaction parameter X«r(@0 with monomer structure of the two blend eomponents. The curves are 
. . . .  a model a - c  binary blend (s 1 = 3 and s2 = 5), - . . . . .  a model k - l  binary blend 
(sl = s2 = 9), and - -  - -  - -  a model a - l  binary blend (sl = 3 and s2 = 9). The microscopic interaction 
e n e r g i e s  a r e  c h o s e n  a s  e / k n T  = - 0 . 0 2 3 ,  el l /k•T = 1 .2 ,  a n d  e22/kBT = 2 . 5  

Fig. 12. The same as in Fig. 11 but for a different self-interaction energy e~,/k»T = 1:5 

Fig. 13. High molecular weight limit small angle neutron scattering effective interaction parameter 
X«~ as a function of 1/T for various compositions of a model a - c  binary blend. The curves are 
- -  ~1 = 0.25, • • • • ~1 = 0.5, and - - - 4~ 1 = 0.75. The upper set of three curves is generated for 
e/k»To = -0 .023 ,  ell /kBT o = 0.45, and e22/k»To = 0.6, while the lower set has e /k»T o = - 0 . 0 2 3 ,  
e11/kBTo = 1 .2 ,  a n d  e / kBT  o = 2 . 5  a t  T O = 4 2 3 . 1 5  K 

F i g .  1 4 .  T h e  s a m e  a s  in  F i g .  13 b u t  f o r  d i f f e r e n t  m i c r o s c o p i c  i n t e r a c t i o n  e n e r g y  p a r a m e t e r s  

e / k » T  o = - - 0 . 0 2 3 ,  e22/kBT o = 0 . 6 ,  a n d  e l l / k B T  o = 0 . 9  (upper set) a n d  811/k»T o = 0 . 5  (lower set) a t  

T o = 4 2 3 . 1 5  K 

b u t  t h e  c e n t r a l  p o r t i o n s  o f  t h e  c u r v e s  in  F i g .  3 h a v e  t h e  s a m e  s h a p e s  as  in  t h e  
h i g h  m o l e c u l a r  w e i g h t  l i m i t  in  F i g .  4.  T h e  c u r v e s  in  F i g .  4 are  g e n e r a l l y  p a r a b o l i c  
in  f o r m ,  b u t  t h e  c e n t e r  a n d  c u r v a t u r e  v a r y  w i t h  ~1~ at  c o n s t a n t  ~. T h i s  b e h a v i o r  
is  in  s t a r k  c o n t r a s t  to  t h e  u s u a l  i n c o m p r e s s i b l e  b l e n d  m o d e l s  in  w h i e h  Z~g is  
i n d e p e n d e n t  o f  e~~ ( a n d  m o l e c u l a r  w e i g h t s )  a t  f i x e d  ~. T h e  Z«ff in  F i g s .  3 a n d  4 
d i f fer  f r o m  E b e c a u s e  o f  l o c a l  p a c k i n g  a n d  i n t e r a c t i o n  i n d u c e d  c o r r e l a t i o n s  t h a t  
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are absent in Flory-Huggins theory but that are included in the lattice cluster 
theory. Figures 3 and 4 also exhibit general variations of Ze~~l) with ]6~~- ,~22] 
which are in accord with previous trends described [53] in paper II. 

Figures 5 and 6 show how varying molecular weight alters the composition 
dependence of X«yy. These two figures take one example each from the model binary 
blends of Figs. 3 and 4, respectively, and present Ze~~l) for several molecular 
weights. The curves from bottom to top in Figs. 5 and 6 correspond to N« = 100, 
500, and 10 4 for both « = 1 and 2. The rounding of the Z«~~l) curves for low 
and high ~~ disappears at higher Me, and Z«y¢ tends to increase with M« (see paper 
II). Further increasing N« beyond 104 has no influence on Zog. Molecular weight 
asymmetry is relevant only when one or more of the components has low molecular 
weights. This is illustrated in Fig. 7 for a model a-c  blends by using N~ = 100 
and the set N2 = 50, 100, 250, and 1000, where again the rounding behavior at 
small and large ~1 is a consequence oflow molecular weights. Figure 7 also exhibits 
the general tendency of Z«y to increase with molecular weights [53]. 

3.4. Dependence of ZŒ on monomer structure for high molecular weights 

Figure 3 displays some possible shapes generated from our calculations for 
Z«g(~l) when el l ~ e22. However, before studying variations with monomer 
structure, it is useful to consider the other Z«y(~I) curves that are produced when 
e,1 and 622 differ more. Figure 8 employs the same a-c  model system as in Fig. 
3, but now e22 is rauch larger and e~l ranges over a wider span. The linear and 
concave shapes of Fig. 8 depart from those in Fig. 3. Figure 9 has the identical 
model systems as in Fig. 8, except that the scattering is from the c-monomer 
chains in Fig. 9, while it is from the a-monomer chains in Fig. 8. The general 
structures of the curves are similar, but we no longer have $1~ (0) equal to $22(0) 
as would be the case for incompressible blends. When the monomer structures 
range over those in Fig. 2, the Z«~~~) curves are changed quantitatively, but not 
qualitatively as exhibited in Figs. 10-12. For instance, the bottom curve in Fig. 
I0 is identical to the second from the bottom curve in Fig. 4 (an a-c  model 
system). The other two curves in Fig. 10 involve model a - l  (top) and a - i  
(middle, for a 10 unit side chain) blends. All three curves in Fig. 10 employ the 
same energy parameters, polymerization indices, etc.; only the monomer struc- 
ture changes. The curvature of Z«~(~I) is increased by blending a-type chains 
with the bulkier l or/-type chains. Figure 11 provides another family of Z«~(~I) 
curves that is again produced by only varying monomer structures from a-l,  k-1 
and a-b  model blends. Notice that the a - b  and k-1 blends contain chains with 
similar monomer structures, while the a - l  blend involves very dissimilar 
monomers. There is not a great difference between the Z«/f(~l) in Fig. 11 despite 
the different character of the blends. Many other instances, however, show large 
departures upon changes in monomer structures. Figure 12 considers the same 
three model blends as in Fig. 11, where only 611 (and hence e12) is changed, 
leading to a substantial alteration in the Z«~(~I) curves. 

3.5. Temperature dependences of X«/r(~bl) 

In general, Zog at a given composition ~1 is dose to a linear function of 1IT in 
the high molecular weight limit, with the nonlinearities growing as e and 
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I~11 - -  ~221 increase. (Plots of X«ff vs. l/T, however, may become very curved when 
molecular weights are low and when T is near the critical point, but these cases 
are not discussed further.) What does vary with composition and monomer 
structure is the slope of Xeff VS. 1lT. The variation with monomer structure is less 
significant than that with composition and interaction energies, but this arises 
partly because of the use of Eq. (3.8) rather than Eq. (3.11) which yields a greater 
monomer structure dependence. Figures 13 and 14 illustrate the variation of the 
slope of )~«¢7 vs. I/T, as weil as the curvature, with composition and microscopic 
interaction energies. The figures display two examples each, and all of them have 
structures a and e of Fig. 2 and the same molecular weights and exchange energy 
~; the only differences are the values of el~ and e2z (and hence/3~2). The three curves 
for each set of e's are for three different compositions (~~ = 0.25, 0.5 and 0.75) 
and therefore illustrate the variation of the slope with composition. The shifts in 
overall X«~ between the two sets of curves in each of the figures exhibits the 
dependence of Xe•" on the magnitudes of ~11 and/322 at fixed e, something that is 
entirely neglected by customary incompressible blend models. 

Paper II notes [53] the existence of an interesting quasi-athermal limit in 
which Xe~ is fairly insensitive to temperature, but the %. and, in particular,/3 are 
non-zero. However, in the limit of high molecular weights for both blend 
components, the temperature insensitivity of Xt# arises only when /3 is nearly 
vanishing. On the other hand, the/30 must definitely be nonzero in order for the 
blend to be stable at normal pressures [53]. 

4. Phase diagrams for binary compressible b|ends: spinodals 

It is natural to proceed from a discussion of extrapolated zero angle coherent 
scattering to a consideration of spinodals as the latter appear when the coherent 
scattering diverges (the cloud point). The cloud points provide a reasonable 
approximation to the phase diagrams, and their computation is far simpler than 
that of the coexistence curves (binodals). All the cloud points computed in this 
section apply to a pressure of 1 atm. Since the coherent scattering involves a fixed 
volume in a sample at constant pressure, we employ the cloud point condition of: 

1 
- -  = 0 .  (4.1) 
Sll (0) 

but determine the volume V from the equation of state at a pressure P = 1 atm. 
It is extremely important to follow this procedure of evaluating V(P) or 
equivalently of evaluating q5 v (P) since use of Eq. (4.1) for arbitrary fixed volumes 
may lead to spurious additional spinodals that appear for unphysical P < 0. 

Paper III fits [54] our theory to experimental data on XeH, AHmix, and A V mi~ 
for PS(D)/PVME blends, so we begin this section by comparing our computa- 
tions with the experimental cloud points of Han et al. [55] in Fig. 15. The 
experimental points are the cloud points as determined by extrapolation of data 
for S(0), while the curve presents our computations using the same moleeular 
weights, monomer structures, and e ü that are obtained in paper III. The 
agreement is excellent and must arise in part because of the fit to the neutron 
scattering data. Discrepancies near the critical point probably arise from the 
neglected fluctuations. Figure 16 considers the same model blend (with ~ < 0) as 
in Fig. 15 for several molecular weights. The curves show the lower blend critical 
temperature and the critical composition increasing with decreasing molecular 
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Fig. 15. Comparison of the LCT cloud points for the PSD/PVME blend with experimental data of 
Han et al. [55] (designated by squares). The three microscopic interaction parameters are taken from 
the fit [54] of the LCT )G~ to experiments for )~eß~l), A H  m~«, and A V  mix ( e / k B T  o = -0.00721, 
el1/k  B T O = 0.5, and e22/kBTo = 0.56 at T O = 415.15 K). The model blend is constructed from monomer 
structures l (styrene) and b (vinylmethylether) 

Fig. 16. The LCT cloud points (spinodal) of a model l - b  blend for different polymerization indices 
Ne. The curves have N 1 = N 2 = 104 - - - ,  N l = N 2 = 103 . . . .  , and N 2 = N 2 = 5 0 0 0  . The three 
microscopic interaction energies are the same as in Fig. 15 

Fig. 17. The LCT cloud points (spinodal) for different model blends in the high molecular weight limit. 
The curves are labelled as - -  a model l - k  blend, - - - a model l - a  blend, and . . . .  a model 
l - b  blend. The interaction energies are identical to those in Fig. 15 

Fig. 18. The LCT cloud points (spinodal) in the high molecular weight limit for a model a - l  blend 
with different self-interaction energies eil and constant ~22/k»T o =0.6 and 8 / k B T o = - 0 . 0 0 l  

( T  o = 415.15 K). The curves from top to bottom involve eil/k B T o = 1.35, 1.4, and 1.5 at T o = 415.15 K 

weigh t s .  T h e  h i g h e s t  m o l e c u l a r  w e i g h t  s p i n o d a l  in  Fig.  16 c h a n g e s  v e r y  s l igh t ly  
u p o n  f u r t h e r  i n c r e a s i n g  m o l e c u l a r  w e i g h t s  b y  a f a c t o r  o f  100. F i g u r e  17 d i s p l a y s  
t he  v a r i a t i o n  o f  t he  s p i n o d a l  ( f o r  ~ < 0) w i t h  m o n o m e r  m o l e c u l a r  s t r u c t u r e s  
u s i n g  t h e  s a m e  i n t e r a c t i o n  ene rg i e s  as  in  Fig.  15 b u t  d i f f e r en t  ( h i g h )  m o l e c u l a r  
w e i g h t s  a n d  m o n o m e r  s t r u c t u r e s .  T h e  c u r v e s  f r o m  t o p  to  b o t t o m  in  Fig .  17 a r e  
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Fig. 19. The LCT cloud points (spinodal) for the high molecular weight limit of  a model a - c  blend 
for different (negative) exchange energies ~ at constant self-interaction energies e11/kBT o = 1.35 and 
e22/kBTo = 1.2 (To = 415.15 K). The curves from top to bottom have e / k»T  o = -0.001,  -0.0005, 
and -0.0001 at T O =415 .15K 

Fig. 20. The LCT cloud point (spinodal) of a model a - e  blend with positive exchange energy 
~/knTo =0.12 x 10 -4, ~ll/kBTo =~22/kBTo =0.5 (at T O =415.15K) and polymerization indices 
NI = 3000 and Ne = 19000 

for l -k ,  l-a,  and l -b  model blends, with identical interaction energies and 
polymerization indices in all cases. The strong dependence on monomer struc- 
tures is apparent, but the shapes of the spinodals are similar. 

Variations of the spinodal with ell and ~22 at constant e = -O.O01kBTo (with 
To =415.15 K) are presented in Fig. 18 for a model a-I  blend. The large 
temperature scale in Fig. 18 hides the differences in critical compositions ~]«) and 
shapes of the three spinodals. From top to bottom the three curves have 
• ]«) = 0.8, 0.85, and 0.95, respectively. Figure 19 displays the dependence of 
cloud points on e for a model a-b  blend with other parameters fixed. The 
expected increase in critical temperature with the net attraction (e more negative) 
is evident. 

The structure of the spinodals becomes more interesting when the net 
exchange interaction e is repulsive (~ > 0). In these cases the molecular weights 
cannot be too large; otherwise the upper blend critical temperature becomes too 
high. For instance, the model a-e  blend in Fig. 20 exhibits a closed loop phase 
diagram. When e is positive and very small, the spinodal has a lower blend 
critical temperature as in the three curves of Fig. 2la for a model a-e  blend in 
which all parameters but ~ remain constant. Making ~ more positive drives the 
critical temperature to lower values, as expected. The spinodals do vary some 
with monomer structure, but more interesting results are obtained in Fig. 21b as 

is made more repulsive. The cloud point curves in Fig. 21b display both upper 
and lower critical blend temperatures, and we find similar behavior for a wide 
variety of model blends. However, the upper critical blend temperature in Fig. 
21b probably would lie below the glass transition temperature, while in other 
examples the lower blend critical temperature would probably lie above the 
degradation temperature of one or both of the blend components. Nevertheless, 
the prediction of the possibility for the existence of both critical temperatures in 



Monomer structure and compressibility: multicomponent polymer blends 379 

650 600 

600 

~5o 

~ 5 1 7 0  

4 5 0  

4 0 0  

200 

] ' ' ' ' I i i i i 

ù,' ! 

i i [ i r i i 

0 . 5  

40o I o ,' . . . .  I . . . .  
0.0 1.0 0.0 0 . 5  1 . 0  

(a) (b) 

Fig. 21. The LCT cloud points (spinodal) of a model a-e binary blend for various exchange energies 
e. The curves have (a) ~ / k B T o = - 0 . 5 × l O  -4 ,  . . . .  e / k » T o = O ,  and 
e / k B T  o = 0.2 × 10 -4 and (b) . . . .  e / k B T  o = 0.12 x 10 -3 (all energies at T o =415.15 K). The poly- 
merization indices are chosen as N1 = N2 = 1 0  3, wlaile the self-interaction energies are taken as 
e u / k B T o  = 1.32 and E22/k~T o = 1.2 at T O =415.15 K 

blends with no specific interactions is extremely interesting. We have not yet 
determined the ranges of  parameters and monomer  structures for which both 
critical temperatures would lie in conveniently accessible ranges. 

5 .  D i s c u s s i o n  

In addition to providing a systematic method for improving the F lory-Huggins  
approximation to the lattice model of  polymer systems, the lattice cluster theory 
(LCT) enables the inclusion of specific monomer  molecular structure and 
interactions into the theory. An important  feature of  the LCT is the fact that the 
free energy of mult icomponent polymer systems is obtained as a simple, albeit 
lengthy, analytical expression that applies for any number of  components and 
for all molecular weights, monomer  structures, compositions, temperatures, and 
nearest neighbor attractive van der Waals interaction energies. This latter feature 
far outweighs the inherent limitations of  any lattice theory as deseribed in 
previous papers. The present applications of  the LCT utilize the simplest possible 
treatment of  the interaction energies in which all portions of  a given monomer  
interact with each other through the same self interaction energy e~~ and with 
portions of  other species monomers through the same a«p. Thus, a compressible 
binary polymer blend is characterized by only three independent microscopic 
interaction energies. It  is possible to perform LCT computations using group 
specific van der Waals energies, but this, of  necessity, makes the algebra more 
lengthy and introduces too many parameters for an initial investigation of  the 
influence of  monomer  strueture on blend properties. 

The theory is used here to eonsider the influence of  monomer  structure on 
the composition (~1) dependence of  the extrapolated small angle neutron 
scattering effective interaction parameter  Ze~ and on cloud points of  compressible 
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binary polymer blends. Paper II begins this study with a consideration of polymers 
having low molecular weights and rather small and attractive exchange energy 

---ell + ~=-2e12. Low molecular weights are used there to emphasize the 
molecular weight dependences of X«~, while the small negative e are considered as 
a preliminary to comparisons in paper III with experimental data for PS(D)/ 
PVME blends. The behavior of X«~ with monomer structure, ~«~, and temperature 
is markedly different in the high molecular weight limit than for the low molecular 
weights studied in paper II. This general behavior is illustrated here using a rauch 
wider array of (vinyl) monomer structures than in paper Il. Because the 
calculations here treat higher molecular weights and stable binary blends, it is 
necessary to perform computations of )~« for much more attractive ~. 

The high molecular weight limit for X«~¢ still displays a strong dependence on 
monomer structure, but the dependence is not as dramatic as found in paper II 
for low molecular weights. However, the definition of the effective Z~f monomer- 
monomer interaction parameter implies that )~"Jr is affected more by monomer 
structures because of the explicit factor of (sl $2) "I/2 in Eq. (3.12). For fixed e, the 
shape of the LCT curves for )~«~~~) varies strongly with %1 and 822 , but )~«~ is 
generally found t o  be a parabolic or linear function of composition ~~, in 
general accord with experimental observations. General trends for the variation 
of the magnitude of )(elf with molecular weights and interactions ~«~ are similar to 
those delineated in paper II, except that the high molecular weight Xeß4~~) do 
not exhibit the rounding at high and low 4~, that is found for low molecular 
weights. While we do not study the pressure dependence of Zey(~~) for high 
molecular weights, the behavior is expected to be similar to that described in 
paper II: Increasing pressure makes the Z«~~I) curve tend more towards the 
incompressible limit. 

Whereas low molecular weights produce a temperature dependence to Ze, g 
that may depart considerably from a linear function of I/T, high molecular 
weights yield a more linear variation, with some curvature due to contributions 
in the free energy that are bilinear in the ~«~, contributions that arise from 
non-random mixing phenomena. The slopes in plots of X«,y versus 1IT generally 
depend on composition as expected from the nature of the Xe~(4~~) curves. Paper 
II defines a quasiathermal blend as orte exhibiting a very small T-dependence to 
)~eaZ despite having nonzero e and ~«e. This quasiathermal limit occurs for high 
molecular weights only when e becomes vanishingly small. 

We study the influence of monomer structure and interactions upon the 
phase diagrams for compressible binary blends. The phase diagrams are repre- 
sented in terms of the cloud point curves for divergent coherent scattering of 
radiation. The first computations consider PS/PVME blends in order to compare 
with the experimental cloud points obtained by Han et al. [55] using monomer 
structures and microscopic interaction energies e«¢ from the fits [54] in paper III 
to )~eff(~l), AH ''i':, and AV »'ix. The agreement is very good considering the 
deficiencies of the lattice model such as those in taking all junctions to be 
completely flexible and in neglecting specific interactions for different portions of 
the vinylmethylether and styrene monomers. 

Some general trends in computed cloud point curves are as follows: When 
the blend has an attractive exchange energy (so e < 0), there is only a lower 
critical solution temperature (LCST) which decreases (along with the critical 
composition) with increasing molecular weights. The cloud point curve is sensi- 
tive to the microscopic interaction energies and to the monomer structures. More 
complicated behavior emerges for positive e. When e > 0 is sufficiently small, 
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there is still only a LCST, but upon increasing e, both a LCST and an upper 
solution critical temperature (UCST) may appear. The two critical temperatures, 
however, do not generally lie between the glass transition and decomposition 
temperatures. Additional effort is necessary to delineate the conditions under 
which both critical temperatures 'may be observable. There is still the expected 
monomer structure and e«~ dependences, and we have found several instances of 
closed loop phase diagrams. 

The new results in this paper, taken in conjunction with those in papers II 
and III, indicate a strong sensitivity of blend properties on monomer structures 
and the importance of treating the blend as compressible. These features provide 
motivation for further development and extension of ttie lattice cluster theory. 
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